AIOS DNA

GPU_OPTIMIZATION_GUIDE

GPU Optimization Guide

Overview

AIOSx supports GPU optimization across NVIDIA, AMD, and Intel GPUs. The UAICP GPU layer provides unified abstraction for managing GPU resources and optimizing workload placement.

Supported GPU Providers

NVIDIA

  • Models: A100, H100, A10, T4
  • Capabilities: CUDA, TensorRT
  • Best For: High-performance AI workloads, LLM inference

AMD

  • Models: MI250, MI210, RX 7900 XTX
  • Capabilities: ROCm
  • Best For: Cost-effective AI workloads, training

Intel

  • Models: Ponte Vecchio, Arc A770
  • Capabilities: oneAPI
  • Best For: Emerging workloads, cost optimization

Configuration

GPU Provider Setup

Edit config/gpu_providers.yaml:

yaml
gpu_providers:
nvidia:
enabled: true
credentials:
api_key: "${NVIDIA_API_KEY}"
default_models:
- A100
- H100
- A10
- T4
amd:
enabled: true
credentials:
api_key: "${AMD_API_KEY}"
default_models:
- MI250
- MI210
- RX 7900 XTX
intel:
enabled: true
credentials:
api_key: "${INTEL_API_KEY}"
default_models:
- Ponte Vecchio
- Arc A770

Environment Variables

bash
export NVIDIA_API_KEY="your-nvidia-key"
export AMD_API_KEY="your-amd-key"
export INTEL_API_KEY="your-intel-key"

Usage

Listing Available GPUs

python
# Via API
GET /uaicp/gpus
# Response
{
"providers": ["nvidia", "amd", "intel"],
"gpus": [...],
"total_providers": 3,
"total_gpus": 9
}

GPU Allocation

python
# Allocate GPU for workload
POST /uaicp/workloads/route
{
"task_id": "task_123",
"task_type": "llm_inference",
"requirements": {
"gpu_required": true,
"gpu_preference": "nvidia", # Optional
"preferred_model": "A100", # Optional
"min_memory_gb": 80,
"max_cost_per_hour": 5.0
}
}

GPU Arbitrator

The GPU arbitrator automatically selects the best GPU based on:

  1. Performance: Highest performance score within constraints
  2. Cost: Lowest cost while meeting performance requirements
  3. Memory: Sufficient memory for workload
  4. Latency: Lowest latency for inference workloads
  5. Availability: Only considers available GPUs

Manual GPU Selection

python
from aiosx.uaicp.gpu.gpu_registry import GPURegistry
from aiosx.uaicp.gpu.nvidia_provider import NVIDIAProvider
# Register provider
gpu_registry = GPURegistry()
nvidia_provider = NVIDIAProvider()
gpu_registry.register_provider(nvidia_provider)
# List GPUs
gpus = await gpu_registry.list_all_gpus()
# Find best GPU
best_gpu = await gpu_registry.find_best_gpu(
requirements={
"preferred_provider": "nvidia",
"min_memory_gb": 80,
"max_cost_per_hour": 5.0
}
)

GPU Benchmarking

python
from aiosx.uaicp.gpu.gpu_arbitrator import GPUArbiter
# Compare GPUs for workload type
comparison = await gpu_arbitrator.compare_gpus(
gpu_ids=["nvidia-a100-1", "amd-mi250-1", "intel-pvc-1"],
workload_type="llm_inference"
)
# Response includes performance scores and recommendations

Performance Characteristics

NVIDIA GPUs

ModelMemoryComputeCost/hrBest For
H10080GB1000 TFLOPS$5.00High-performance inference
A10080GB312 TFLOPS$3.00General AI workloads
A1024GB125 TFLOPS$1.50Cost-effective inference
T416GB65 TFLOPS$0.80Light workloads

AMD GPUs

ModelMemoryComputeCost/hrBest For
MI250128GB383 TFLOPS$2.50High-memory workloads
MI21064GB181 TFLOPS$1.80Training workloads
RX 790024GB61 TFLOPS$1.20Cost optimization

Intel GPUs

ModelMemoryComputeCost/hrBest For
Ponte Vecchio128GB200 TFLOPS$2.00Emerging workloads
Arc A77016GB27 TFLOPS$0.60Light workloads

Best Practices

  1. Workload Matching: Match GPU to workload requirements

    • LLM inference: High memory (A100, H100, MI250)
    • Training: High compute (H100, MI250)
    • Light inference: Cost-effective (A10, T4, RX 7900)
  2. Cost Optimization: Use GPU arbitrator for automatic cost optimization

  3. Multi-Provider: Leverage multiple providers for redundancy

  4. Benchmarking: Benchmark GPUs for specific workload types

  5. Monitoring: Monitor GPU utilization and performance

Integration with Resource Arbiter

The Resource Arbiter integrates GPU selection with other resources:

python
# Allocate complete resource stack
allocation = await resource_arbiter.allocate_resources(
task_id="task_123",
requirements={
"gpu_required": True,
"cpu_required": True,
"model_required": True,
"gpu_preference": "nvidia",
"cost_constraint": 10.0
}
)

Troubleshooting

GPU Not Available

  1. Check provider credentials
  2. Verify GPU availability in region
  3. Check cost constraints
  4. Review memory requirements

Performance Issues

  1. Benchmark GPU for specific workload
  2. Check GPU utilization
  3. Verify workload-GPU compatibility
  4. Consider alternative GPU models

High Costs

  1. Use cost constraints in allocation
  2. Consider AMD or Intel for cost savings
  3. Use lower-tier models for non-critical workloads
  4. Optimize with ROI engine

Was this helpful?