GPU_OPTIMIZATION_GUIDE
GPU Optimization Guide
Overview
AIOSx supports GPU optimization across NVIDIA, AMD, and Intel GPUs. The UAICP GPU layer provides unified abstraction for managing GPU resources and optimizing workload placement.
Supported GPU Providers
NVIDIA
- Models: A100, H100, A10, T4
- Capabilities: CUDA, TensorRT
- Best For: High-performance AI workloads, LLM inference
AMD
- Models: MI250, MI210, RX 7900 XTX
- Capabilities: ROCm
- Best For: Cost-effective AI workloads, training
Intel
- Models: Ponte Vecchio, Arc A770
- Capabilities: oneAPI
- Best For: Emerging workloads, cost optimization
Configuration
GPU Provider Setup
Edit config/gpu_providers.yaml:
yamlgpu_providers:nvidia:enabled: truecredentials:api_key: "${NVIDIA_API_KEY}"default_models:- A100- H100- A10- T4amd:enabled: truecredentials:api_key: "${AMD_API_KEY}"default_models:- MI250- MI210- RX 7900 XTXintel:enabled: truecredentials:api_key: "${INTEL_API_KEY}"default_models:- Ponte Vecchio- Arc A770
Environment Variables
bashexport NVIDIA_API_KEY="your-nvidia-key"export AMD_API_KEY="your-amd-key"export INTEL_API_KEY="your-intel-key"
Usage
Listing Available GPUs
python# Via APIGET /uaicp/gpus# Response{"providers": ["nvidia", "amd", "intel"],"gpus": [...],"total_providers": 3,"total_gpus": 9}
GPU Allocation
python# Allocate GPU for workloadPOST /uaicp/workloads/route{"task_id": "task_123","task_type": "llm_inference","requirements": {"gpu_required": true,"gpu_preference": "nvidia", # Optional"preferred_model": "A100", # Optional"min_memory_gb": 80,"max_cost_per_hour": 5.0}}
GPU Arbitrator
The GPU arbitrator automatically selects the best GPU based on:
- Performance: Highest performance score within constraints
- Cost: Lowest cost while meeting performance requirements
- Memory: Sufficient memory for workload
- Latency: Lowest latency for inference workloads
- Availability: Only considers available GPUs
Manual GPU Selection
pythonfrom aiosx.uaicp.gpu.gpu_registry import GPURegistryfrom aiosx.uaicp.gpu.nvidia_provider import NVIDIAProvider# Register providergpu_registry = GPURegistry()nvidia_provider = NVIDIAProvider()gpu_registry.register_provider(nvidia_provider)# List GPUsgpus = await gpu_registry.list_all_gpus()# Find best GPUbest_gpu = await gpu_registry.find_best_gpu(requirements={"preferred_provider": "nvidia","min_memory_gb": 80,"max_cost_per_hour": 5.0})
GPU Benchmarking
pythonfrom aiosx.uaicp.gpu.gpu_arbitrator import GPUArbiter# Compare GPUs for workload typecomparison = await gpu_arbitrator.compare_gpus(gpu_ids=["nvidia-a100-1", "amd-mi250-1", "intel-pvc-1"],workload_type="llm_inference")# Response includes performance scores and recommendations
Performance Characteristics
NVIDIA GPUs
| Model | Memory | Compute | Cost/hr | Best For |
|---|---|---|---|---|
| H100 | 80GB | 1000 TFLOPS | $5.00 | High-performance inference |
| A100 | 80GB | 312 TFLOPS | $3.00 | General AI workloads |
| A10 | 24GB | 125 TFLOPS | $1.50 | Cost-effective inference |
| T4 | 16GB | 65 TFLOPS | $0.80 | Light workloads |
AMD GPUs
| Model | Memory | Compute | Cost/hr | Best For |
|---|---|---|---|---|
| MI250 | 128GB | 383 TFLOPS | $2.50 | High-memory workloads |
| MI210 | 64GB | 181 TFLOPS | $1.80 | Training workloads |
| RX 7900 | 24GB | 61 TFLOPS | $1.20 | Cost optimization |
Intel GPUs
| Model | Memory | Compute | Cost/hr | Best For |
|---|---|---|---|---|
| Ponte Vecchio | 128GB | 200 TFLOPS | $2.00 | Emerging workloads |
| Arc A770 | 16GB | 27 TFLOPS | $0.60 | Light workloads |
Best Practices
-
Workload Matching: Match GPU to workload requirements
- LLM inference: High memory (A100, H100, MI250)
- Training: High compute (H100, MI250)
- Light inference: Cost-effective (A10, T4, RX 7900)
-
Cost Optimization: Use GPU arbitrator for automatic cost optimization
-
Multi-Provider: Leverage multiple providers for redundancy
-
Benchmarking: Benchmark GPUs for specific workload types
-
Monitoring: Monitor GPU utilization and performance
Integration with Resource Arbiter
The Resource Arbiter integrates GPU selection with other resources:
python# Allocate complete resource stackallocation = await resource_arbiter.allocate_resources(task_id="task_123",requirements={"gpu_required": True,"cpu_required": True,"model_required": True,"gpu_preference": "nvidia","cost_constraint": 10.0})
Troubleshooting
GPU Not Available
- Check provider credentials
- Verify GPU availability in region
- Check cost constraints
- Review memory requirements
Performance Issues
- Benchmark GPU for specific workload
- Check GPU utilization
- Verify workload-GPU compatibility
- Consider alternative GPU models
High Costs
- Use cost constraints in allocation
- Consider AMD or Intel for cost savings
- Use lower-tier models for non-critical workloads
- Optimize with ROI engine