UAICP_ARCHITECTURE
UAICP Architecture Documentation
Overview
The Universal AI Control Plane (UAICP) is the top-level orchestrator for planetary-scale AI operations in AIOSx. It coordinates all 6 core functions to provide global orchestration, multi-cloud abstraction, GPU arbitration, multi-model routing, cross-domain scheduling, global ROI optimization, autonomous self-healing, and reliability/SLO governance.
Core Functions
1. Routing Engine
Purpose: Sends tasks to correct domain kernel.
Location: aiosx/uaicp/routing_engine.py
Features:
- Extends existing mesh orchestrator with global context awareness
- Domain-aware task routing
- Cross-domain workflow coordination
- Cloud, GPU, and cost-aware routing decisions
Integration: Extends aiosx/mesh/orchestrator.py
2. Execution Planner
Purpose: Splits tasks across cloud/edge/factory/home.
Location: aiosx/uaicp/execution_planner.py
Features:
- Multi-location execution planning
- Strategy selection (single, parallel, sequential, distributed)
- Cost and latency estimation
- Location type selection (cloud, edge, factory, home)
3. Resource Arbiter
Purpose: Chooses GPUs/CPU/models based on cost/performance.
Location: aiosx/uaicp/resource_arbiter.py
Features:
- GPU resource selection (NVIDIA, AMD, Intel)
- CPU resource allocation
- Model selection optimization
- Cost/performance balancing
4. Reliability Manager
Purpose: Monitors health, triggers self-healing.
Location: aiosx/uaicp/reliability_manager.py
Features:
- Global health monitoring across all domains and clouds
- Cross-domain self-healing coordination
- Health aggregation by domain and cloud
- Critical health detection and escalation
Integration: Extends aiosx/health/healing/healing_engine.py
5. Optimization Loop
Purpose: AKO multi-armed bandit tuning.
Location: aiosx/uaicp/optimization_loop.py
Features:
- Coordinates optimization across all domains
- Integration with AKO controller
- Optimization cycle tracking
- Performance improvement estimation
Integration: Integrates with aiosx/ako/controller.py
6. ROI Engine
Purpose: Decides workload layout based on value impact.
Location: aiosx/uaicp/roi_engine.py
Features:
- ROI calculation for workloads
- Business value assessment
- Workload placement recommendations
- Cost/revenue tracking
Multi-Cloud Orchestration
Cloud Providers
Location: aiosx/uaicp/cloud/
Supported Providers:
- AWS (
aws_provider.py) - Azure (
azure_provider.py) - GCP (
gcp_provider.py) - CoreWeave (
coreweave_provider.py) - Private Datacenters (
private_datacenter_provider.py)
Features:
- Unified cloud provider abstraction
- Resource provisioning and deprovisioning
- Cost tracking
- Region management
Workload Router
Location: aiosx/uaicp/cloud/workload_router.py
Routes workloads to optimal cloud based on:
- Cost constraints
- Latency requirements
- Availability
- Region preferences
GPU Optimization
GPU Providers
Location: aiosx/uaicp/gpu/
Supported Providers:
- NVIDIA (
nvidia_provider.py) - CUDA, TensorRT - AMD (
amd_provider.py) - ROCm - Intel (
intel_provider.py) - oneAPI
Features:
- GPU resource management
- Performance benchmarking
- Chip-level performance comparison
- Cost/performance optimization
GPU Arbitrator
Location: aiosx/uaicp/gpu/gpu_arbitrator.py
Compares chip-level performance and routes workloads to optimal GPUs based on:
- Performance requirements
- Cost constraints
- Memory requirements
- Availability
Integration Points
With Existing Systems
- Mesh Orchestrator: Extended for global routing
- AKO Controller: Integrated for optimization decisions
- Self-Healing Engine: Extended for global healing coordination
- SLO Monitor: Extended for global SLO compliance
- Kernel Registry: Used for kernel discovery and routing
Configuration
UAICP Configuration
File: config/uaicp.yaml
Configuration for:
- Routing policies
- Execution strategies
- Resource preferences
- Reliability thresholds
- Optimization settings
- ROI tracking
Cloud Provider Configuration
File: config/cloud_providers.yaml
Configuration for:
- Cloud provider credentials
- Available regions
- Provider-specific settings
GPU Provider Configuration
File: config/gpu_providers.yaml
Configuration for:
- GPU provider credentials
- Available GPU models
- Capability settings
API Endpoints
All UAICP endpoints are available under /uaicp/:
GET /uaicp/overview- Global system overviewGET /uaicp/clouds- List cloud providersGET /uaicp/gpus- List GPU resourcesPOST /uaicp/workloads/route- Route workloadGET /uaicp/roi- ROI metricsGET /uaicp/global-health- Global health statusGET /uaicp/policies- List policiesPOST /uaicp/policies- Create/update policy
Usage Example
pythonfrom aiosx.uaicp.uaicp_controller import UAICPController# Initialize UAICP (done automatically on startup)# Access via API or directly# Route and execute a taskresult = await uaicp_controller.route_and_execute(task_id="task_123",task_type="llm_inference",domain="llm",requirements={"gpu_required": True,"latency_slo_ms": 500,"cost_constraint": 5.0,})
Architecture Diagram
┌─────────────────────────────────────────┐
│ UAICP Controller │
│ (Coordinates all 6 functions) │
└─────────────────────────────────────────┘
│
├─── Routing Engine ───> Mesh Orchestrator
├─── Execution Planner ───> Cloud/Edge/Factory/Home
├─── Resource Arbiter ───> GPU/CPU/Model Selection
├─── Reliability Manager ───> Self-Healing Engine
├─── Optimization Loop ───> AKO Controller
└─── ROI Engine ───> Value-Based Scheduling
Future Enhancements
- Advanced ML-based routing
- Predictive resource allocation
- Cross-cloud workload migration
- Real-time cost optimization
- Advanced GPU benchmarking
- Multi-model ensemble routing